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AbstracGA possible alternative to Kubo theory is discussed for relating 
atomic transport coefficients in simple liquids. "he arguments used result in 
a new expansion, in which the density-donsity response function x is ex- 
panded in a power series in the self response function &. The Coefficients of 
this expansion can be determined, in principle, to all orders, from the moments 
of the neutron scattering functions S ( q w )  and SJqw) .  It is then proposed, by 
appeal to the hydrodynamic equations, that the radius of convergence of this 
series can be used to relate diffusion to the sound wave attenuation coefficient. 
Finally, this x-xS expansion allows a direct comparison of the exact theory 
presented in this paper with earlier approximate theories relating incoherent 
and coherent neutron scattering from liquids. 

1. Introduction 

So far, two principal approaches to the problem of calculating 
atomic transport coefficients in simple liquids are available. The 
first of these, historically, considers the full non-equilibrium problem, 
and is based on the calculation of the perturbed distribution function. 
Important progress has been made with this method, which is 
extensively reviewed by Rice and Gray.(') The second approach, 
the correlation function formalism of Green,(2) and now often 
associated with the K ~ b o ' ~ )  treatment of transport coefficients, does 
not get involved at all in the calculation of non-equilibrium distribu- 
tion functions, but the transport process is linked to the decay of 
fluctuations in an equilibrium ensemble. In practice, what one 
needs in this second method is a detailed knowledge of the appro- 
priate frequency and wave vector dependent response functions in 
the small q, small W ,  limit (Eqs. (1.5) and (1.6) below). 
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198 B. L. O Y O R F F Y  A N D  N. H. MARCH 

The purpose of this paper is to discuss a third method, which we 
believe to have some practical advantages over either of the two 
methods discussed above, although, in its philosophy, i t  remains 
close to the Green-Kubo formalism. This connection will immediately 
be clear in that we shall make extensive use of response function 
theory, linking this later, at  least in an approximate way, with the 
hydrodynamic regime. One aim will be to express the atomic trans- 
port coefficients in terms of the static correlation functions of the 
dense liquid. 

The density-density response function ~ ( q w )  may be defined as 
follows. If we switch on an interaction Hamiltonian of the form 

H,Ilt(t) = - dr V e x M  p ( r )  (1.1) 

(1.2) 

s 
where 

p( r )  = CA(r - r,) 
a 

then the corresponding density change 8p induced by Vex&) may 
be h i t ten ,  in terms of the double Fourier transform Vext(qw) with 
respect to r and t 

~ ( q w )  in Eq. (1.3) is the density-density response function, the 
calculation of which is the prime task in this paper. 

If the external potential is coupled only to  a selected particle at 
rs, through the corresponding density pa((rt) = 6(r -rs(t)) then the 
change in p' may be written as 

ap(qw) = X ( W )  Vext(Pw)* (1.3) 

W ( q w )  = X & P )  V $ ( ! P )  (1.4) 

where xs(qw) is a response function often referred to as the self part 

As is well known, these two response functions determine the 
diffusion coefficient D and the sound wave attenuation coefficient 
r =61+ 5, where 7 and 5 are the shear and bulk viscosities respec- 
tively, through the Kubo relations 

(1.5) 

of x(qw).  

w x EI"(qw) D = lim lim 
w-+o ( 1 4  QZ 

and 
MZW3X"(QW) r =  lim lim 

w-+o 9-0 Q' 
where x i f  and xff are the imaginary parts of x. and x respectively. 
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ATOMIC TRANSPORT COEFFICIENTS 199 

The eventual object therefore of the present approach is to replace 
these equations by relations that involve only static equilibrium pro- 
perties. "here is a solution to this problem, a t  least in principle, 
since both ~ ( q o )  and x,(qw) possess a high frequency expansion, with 
expansion coefficients that are expressed solely in terms of the 
static correlation functions and the pair potential. If these series 
could be summed up, then, by substituting the resulta into Eqs. (1.5) 
and (1.6), the desired expressions for diffusion and viscosity would 
result. However, because of the extreme complexity of this series, 
there is, a t  present, little hope of achieving this summation. 

The approach we adopt here is baaed on the observation that, 
although the moment expansions of x and X ,  cannot be summed up, 
useful information can be written down for their radius of convergence. 
It is then argued that these radii of convergence determine the 
modulus of the complex frequencies, though not the phase, where 
~ ( q w )  and xl(pw) have poles arising from collisions. In  Sec. 2, we 
therefore derive expressions for these radii of convergence in t e r m  
of the moments. We show there, however, that though the sound 
wave attenuation coe%icient is related to the phase of a pole, i t  is 
not determined by the radius of convergence of the moment expansion 
for x .  In Sec. 4 we therefore convert the moment expansion, which 
is an expansion in powers of ( l / i ~ ) ~  into a power series in xS. I n  
Sec. 5, we suggest that the radius of convergence of this new series 
may relate D to r. We conclude by discussing in Sec. 6 various 
approximations suggested earlier in the light of this new expansion, 
and the relation to neutron scattering in Sec. 7. 

2. Radius of Convergence of Moment Expansion 

us to write the Laplace transform of x(@) and ~ ~ ( q t )  as 
In the classical limit, the fluctuation4issipation theorem allows 

'and 
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200 B. L. Q Y O R F F Y  AND N. H. M A R C H  

where F(qt) and J',(qt) are the density-density correlation function 
and its self part respectively, defined by 

and 
F(qt) = ( p a ( t )  d o ) )  (2.3) 

Fd@) = (pa' ( t )  p'-q(O)) (2.4) 
where pa = x e i 4 . a i  and p u ' =  eh 'R* ,  Rf denoting the position 

vector of the ith particle. 

be turned into power series in ( l l p z ) ,  and we may write 

i 

By successive partial integrations, both Eqs. (2 .1)  and ( 2 . 2 )  can 

and 

where 
azn 

an = BS ~ ( $ 1  I 
I L  

= B( - l)"(p,(")(o) p(rb(O)) 

= B( - 1)"(pu''")(O) P'J:YO))- 

(2.7) 

(2.8) 

Here, use has been made of the fact that odd derivatives of both 
F(qt) and Fa($) vanish at  t = 0, on account of time reversal in- 
variance. Equations (2.5) and (2.6) are often referred to as the 
moment expansions of the response functions x and x J ,  for the 
coefficients a, and yn may also be written as 

: = 0  

Yn = B wn Fs(qt) 

a, = p( - l)"[*wZ"s(qw) 277 = B( - l ) n ( w z n )  (2.9) 

and 

where S(qw) and S,(qw) are the coherent and incoherent scattering 
functions respectively, related to F(qt) and F,(qt) by Fourier trans- 
formation. 

It is clear from Eqs. (2.7) and (2.8) that the expansion coefficients 
a,, and yn are completely determined by the static correlation 
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ATOMIC T R A N S P O R T  C O E F F I C I E N T S  20 1 

functions and the pair potential, provided the total potential energy 
is assumed to  consist solely of two-particle terms. Therefore, the 
objective of the present work would be achieved if we could write 
the transport coefficients r and D in terms of the an’s and yn’s. It 
is also evident that the reason why this cannot be done by simply 
substituting Eqs. (2.5) and (2.6) into the appropriate Kubo relations 
is that they diverge for small p .  I n  fact, their radii of convergence 
are given by 

lim 
n - m  

and 

li m 
(I-w 

(2.11) 

(2.12) 

provided there are no spurious poles. If there are, methods exist 
for getting round the difficulty, but we shall not go into this here. 
Thus, in the case where the limits in Eqs. (2.11) and (2.12) exist, the 
smallest value of p for which we can still use the moment expansion 
is p > rand p > r’. 

The first point which now emerges from our considerations is 
that  the information provided by the coefficients a,, and yn as to 
the radius of convergence of the series for x and x b ,  when combined 
with the knowledge of the analytic properties of the response 
functions x and x. in the complex p-plane is sufficient to define 
collision times, which i t  may be possible to relate to r a n d  D. . 

3. Hydrodynamic Regime and Analytic Properties of Response 
Functions 

To obtain further knowledge of the analytic properties of x and X, 
which we need, we must now turn to the hydrodynamic equations. 
Naturally, these equations are only valid in the long wavelength and 
long time regime, and we must therefore be careful to keep in mind 
this restriction. 

Let us consider the function x(qz) as the analytic continuation of 
~ ( q p )  away from the real p-axis into the whole complex plane. We 
shall also assume that we are dealing with a simple viscous fluid 
without thermal diffusion (c,/cv = 1) though this restriction is not 
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202 B. L. O Y O R F F Y  A N D  N. H. M A R C H  

Real p 

Figure 1 .  

difficult to remove. Under such circumstances, it is well known 
from the work of many authors that the requirement that, for small 
spatial variations and for long times, a density fluctuation must 
satisfy the macroscopic equations of hydrodynamics implies that  
x(qz) must have two simple poles in the lower half of the complex 
plane, given by the expression 

where wQ2 = v?qZ, with v,  the velocity of sound. 
Furthermore, causality and thermodynamic stability require that 

x(q.z) be analytic everywhere in the upper half of the complex plane. 
It then follows from the theory of analytic functions that a (l/zz) 
expansion will converge along the real axis, up to, but not including, 
the point where the circle about the origin, ( l /pZ) = 0,  which goes 
through the nearest pole, intersects the real axis. Hence by inspec- 
tion of Fig. 1, we conclude that, with the notation shown there, 

(3.2) 
From Eq. (3.1), 

ro2 = zo+zo- = wq2 = v,=q= 

where zo+ and zo- are the positions of the poles. 
these are given by 

(3.3) 
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A T O M I C  T R A N S P O R T  C O E F F I C I E N T S  203 

It should be noted that, as q -+ 0, ro -+ 0. But, from (2.1 I ) ,  the moment 
expansion converges to finite r as q -+ 0. Thus r and ro in general can- 
not be identified. If we had assumed that the coefficients a,, can be 
used to evaluate ro2 then the sound velocity v 8  would have been 

(3.4) 
1 an+l lim - lim - . 

Though the exact evaluation of the coefficients a,, and a,,+1 for 
large n shows that the q -+ 0 limit diverges, it is of some interest that 
if we estimate the limit in Eq. (3.4) from the low order ratios, and 
form therefore a,/al we obtain 

9-0 45 n + m  1 an 1 

where +(r )  is the pair potential. Except for the kinetic term 3//?m, 
which is very small for a dense fluid, this is the same result as that 
obtained recently by Hubbard and Beeby,c4) for the velocity of sound. 

Also by making the ‘‘ decoupling ” on the moments, such that 

(3.6). 

we obtain the usual “ independent phonon ” result, namely that 

(3.7) 

Unfortunately, the radius of convergence r is not sufficient to 
determine the sound velocity v, in any rigorous way. If one could get 
ro,  one must also know the phase of the complex numbers z0f 
determining the position of the pole, in order to calculate r. Such 
information is not, unfortunately, available from the coefficients a,; 
as 

lim - 
n+= I an I 

is related to a collision time. 
There is a possible way round this difficulty, however, as we shall 

now discuss. If we convert the moment expansion for x into a power 
series in terms of another variable, and, as it happens, one very 
convenient choice of this variable is xs, then by an analysis entirely 
similar to the foregoing discussion, one can attempt to relate r and 
the diffusion constant D.  
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204 B. L. Q Y O R F F Y  A N D  N. H. MARCH 

To conclude this section, we turn to the moment expansion for the 
self part of the response function x s .  Since x s  describes the meander- 
ings of a randomly selected atom in a dense liquid environment, 
it  is clear that in the hydrodynamic limit it  must describe self 
diffusion. This leads to the conclusion that, for small q, a pole of x s  
is described by 

that is to say, x s  haa a simple pole at p = - Dqz. Consequently, from 
Fig. 2, it  is tempting to identify the radius of convergence of the 
moment expansion given by Eq. (2.6), namely 

with the square of the diffusion coefficient times qz. D would then be 
obtained from 

(3.10) 

Unfortunately, it  is not possible to make even a rough f i s t  estimate 
of D from the first few moments, for these give the wrong q depen- 
dence. Thus we have 

(3.11) 

The origin of this difficulty is that we must expect that if we can follow 
the ratio of successive moments to higher and higher order, this must 
eventually give a constant for the ratio yn+l/yn, which again we can 
take to constitute a definition of a collision time. It may again prove 
possible to relate this to D .  

4. Expansion of x in terms of xs 
We have seen that no simple way of getting I' and D out of 

the moment expansions is afforded by the above discussion. We 
turn therefore to an alternative expansion in this section, in which 
we shall convert the moment expansion for the response function 
x(q, p) into a power series in xo(q, p ) .  It will be seen later that, aa a 
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206 B. L. G Y O R F F Y  A N D  N. H. M A R C H  

result, we can approximately relate the radius of convergence of this 
new series to the transport coefficient r. 

The basis of the present method lies in the fact that  both x(q, p )  
and xs(q, p )  are monotonically decreasing positive real functions of p .  
For a general response function, this assertion was proved by N. N. 
Meiman and is discussed at length by Landau and Lifshitz.(s) The 
proof relies only on the general principles of causality and thermo- 
dynamic stability, plus certain theorems in the theory of analytic 
functions, and can be taken over immediately to x(q, p )  and xS(q ,  p ) .  

Since xs(q,  p )  is a monotonically decreasing function of p ,  it has an 
inverse x S - I ( x s )  = p ,  which is single-valued. Hence we may write 

(4.1) 
It must be emphasized that %(q, xs) is a complicated function 
depending on the functional form of xs (qp) .  Nevertheless, it may be 
expanded about xs = 0 and the desired series results, namely 

X(% P) = x ( 4 ,  xs-'(xs)) = &7, X S k P ) ) .  

That the series (4.2) converges for some finite range of xs about 
xs = 0 may be seen as follows. Since xs(qp)  has an expansion 
about p -+ ic) where xs = 0, by the implicit function theorem i t  
follows that xS-' has an expansion about xs = 0, where xs-l + Q). 
Furthermore, since we know that x(q, xS-l) has an  expansion about 
xs-l -+ p -, m i t  is certain that i ( q ,  xs) must have a small xs expansion 
that converges in some finite interval 0 < xs < R,. 

Having established the existence of the expansion (4.2), we must 
now turn to the calculation of the coefficients a,. By substituting 
the moment expansions (2.5) and (2.6) into Eq. (4.2), we obtain 
immediately 

Formally we can write 

[m 1 .-($)m]' = m=O i .mz(;)z+m 
where 

coz = yl' 
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A T O M I C  T R A N S P O R T  C O E F F I C I E N T S  207 

and 

Therefore, by equating coefficients of various powers of l / p z  in (4.3), 
we may write 

(4.7) 

Thus, by solving (4.6) for the coefficients cma in terms of the yn’s and 
substituting the result in (4.7) an infinite set of algebraic equations 
is obtained for the an’s in terms of the an’s and yn’s, which are 
respectively, the momenta of the coherent and incoherent scattering 
functions S(qw) and S,(qw). Having solved these equations, we 
have accomplished the task of generating an expansion of x in 
terms of xs. It should be stressed that this expansion is exact in 
the sense that it gives x exactly provided the assumptions of 
causality and thermodynamic stability hold, and x S  < R, the radius 
of convergence. 

To make the a.rgument quite concrete, let us calculate the first few 
coefficients in our new expansion. From Eqs. (4.5) and (4.6) we 
have 

col = y1, Go2 = YI2, c03 = y13 

C l l  = yz, c,2 = 2YlY2, (4.8) 

c21 = y3. 

From Eq. (4.7) we have further 

al = alcO1 

az = a, cll +az cgZ 

a3 = a, c21 + a2 cI2 + a3 
and hence we find 

a, = 1 

a 2  - Y2 a2 = - 
( Y J 2  

(4.9) 

(4.10) 
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208 B. L. Q Y O R F F Y  A N D  N. H. MARCH 

Explicit expressions for an and yn, n = 1 to 3 inclusive, are known 
in terms of the static correlation functions and the pair potential. 
Though very tedious, there is no difficulty in principle in calculating 
the higher order coefficients. 

5. Radius of Convergence of r x 8  Expansion and Transport Coefficient 

We again have recourse to the fact that the high order coefficients 
in a power series like (4.2) are almost entirely determined by the 
behaviour of the function represented by the series, near its singu- 
larities. We have already seen what the nature of the singularities 
of x is in the hydrodynamic regime, from Eq. (3.1). 

As before, we note tha t  the radius of convergence R of the series 
(4.2) is given by 

provided this limit exists. The question we must then answer 
concerns the position of the poles of x in the complex xs plane. To 
find out this information, we note that x blows up at the diffusion 
pole z = - Dq2. However, it does so because xs goes to infinity, and 
since (4.2) is a series with a finite radius of convergence R, this 
singularity is of no interest to us. 

Our interest is therefore in the sound wave poles which we have 
seen to be at z = z 0 * .  Clearly, x s  is finite here, and such that 

X S ( Q Z O * )  = t o * .  (5.2) 

Hence the function C a n t n  = x(q4)  must have a pole in the complex 
plane when 6 = to*. Therefore, in complete analogy with the 
discussion in Sec. 3, we may conclude that 

where we have used the fact that x8(pz*)  = xS*(p), since xs is 
analytic. For sufficiently small q,  xs is well described by the hydro- 
dynamic form given by Eq. (3.8). Thus we find 
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A T O M I C  T R A N S P O R T  C O E F F I C I E N T S  209 

Calculating the limit on the left-hand-side of Eq. (5.4) and then 
solving for r, we obtain the result 

where 

Equation (4.2), which is exact, is the main result of this paper. Equa- 
tion (5.5) is an expression relating the sound wave attenuation r to 
the diffusion coefIicient D, the velocity of sound us, and the moments 
an and yn. This is the alternative we are proposing to the Kubo 
formula (1.6): we are not able to show it is exact and i t  may be 
necesaary to use it only for small n. 

We wish to point out here that the presence of the diffusion 
coefficient D in (5.5) is specially due to our choice of x, as a new 
expansion variable. Had we chosen another monotonically decreasing 
function of p, like (1/1 + p )  say, then by an analogous argument we 
would obtain an alternative relation for r. 

Evidently, 
it is the symmetrical positions of the poles z0* which prevents us 
getting an expression for r, assuming a priori knowledge of the 
velocity of sound v,. Hence, any transformation of the variable p, 
or rather a mapping of z to another complex plane (, which removes 
this symmetry, will give us the desired result. 

The reaaon why x,(q,  p) was chosen as the expansion variable, in 
spite of the added calculationa1 complexity, is that the expansion in 
X, allows us to make direct contact with earlier theories of dynamics1 
response in simple liquids, and to relate coherent and incoherent 
neutron scattering. 

To see the basic point involved, we refer to Fig. 1. 

6. Approximate Theones 

A number of approximate theories exist which express the response 
of a simple liquid to an external perturbation in terms of the meander- 
ings of a randomly selected atom. The results of these theories are 
summarized in Table 1, where they are written as relations between 
x and x s .  

B 
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210 B. L. G Y O R F F Y  A N D  N. H. M A R C H  

TABLE 1 

Vineyard (6) x(9P) = S(!?)Xs(PP) 

Kerr (7)  

NOTE : S(q) is the liquid structure factor while c(q )  is the direct 
correlation function defined as [S(q) - l ] /S (q ) .  To write the 
Hubbard-Beeby result in the above form, use has been made of 
the hydrodynamic form of given by Eq. (3.8). 

Clearly, all three results can be written as expansions of x in 
powers of xs. By comparing these expansions with (4.2), a set of 
approximate an’s may be obtained. One can then attempt to 
evaluate the transport coefficient r from (5 .5 ) .  

Vineyard’s theory, which was historically the first to relate x and 
X, is evidently too simple. It predicts an infinite radius of conver- 
gence end, aa is well known, it misses out the sound wave poles 
altogether. 

In the case of Kerr’s theory (his simplified model in which the 
fourth moment is violated ; though his general theory does not suffer 
from this defect) a finite radius of convergence exists, given by 
L(q) = l//lc(q), but it remains finite as q tends to zero, whereas 
Eq. (5.5) would require that P ( q )  should have a q-2 singularity as 
q -P 0. The conclusion is again that it is still too simple a theory to 
describe correctly a hydrodynamic pole. 

The Hubbard-Beeby theory involves only even powers of x, in 
the hydrodynamic limit as seen from Table 1, and hence one must 
calculate the radius of convergence from the formula 

an+2 lim - = L2(q) 
n-m a, 

which then gives 

It then follows from Eq. (5 .5)  that 
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It is reassuring to note that the above conclusions about the 
approximate theories arrived at from our approximation for calculat- 
ing transport coefficients are the same as those drawn by the present 
writers(*) by using the Kubo formulae. 

7. Relation of x-xs Expansion 60 Neutron Scattering 
What lends impetus to formulating theories that relate x(qp)  to 

x.(qp) is the fact that both of these response functions can be 
measured independently by suitable neutron experiments. Thus, 
the scattering function S(qw) is directly related to the probability 
that a neutron impinging on the liquid will transfer a momentum 

and an energy &o to the liquid. S,(qw) can be studied by measuring 
the incoherent scattering. Now the fluctuation dissipation theorem 
relates S,(qw) to I m  xs(q  -L) and S(q, w )  to I m  x(q ,  - i w ) .  This 
knowledge, in turn, is, at least in principle, sufficient to  determine 
xs and x through the Kramers-Kronig relation. Thus neutron 
scattering experiments can be thought of as directly determining x 
and xS. 

Now in the approximate theories listed in the previous section, it 
is fair to say that the self response function xs appears in the course 
of the approximations made for x ; that is essentially " accidentally ". 

As regards the main purpose of this paper, the question as to 
whether x can be exactly related to x8 is answered in the affirmative in 
Sec. 4. Admittedly, the relation we propose is a very complicated 
one, for the coefficients a,  are functionals of x and xs. Nevertheless, 
it  shows that the philosophy of Vineyard (1958) is completely justified 
and offers promise of basically relating the incoherent and coherent 
neutron scattering from 1iquids.t 
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